| = | ° | rechtwinkliges Viereck | |||
| = | mm | ||||
| = | mm | ||||
| Winkel | α = | - | ° | β = | - | ° | α = γ ; β = δ |
| α = | - | rad | β = | - | rad | ||
| Seitenlängen | a = | - | mm | b = | - | mm | a = c ; b = d |
| Höhe | ha = | - | mm | hb = | - | mm | |
| Diagonale | e = | - | mm | f = | - | mm | |
| Umfang | U = | - | mm | ||||
| Fläche | A = | - | mm² | ||||
| Punktkoordinaten | A = | ( | - | | | - | ) mm = Koordinatenursprung |
| B = | ( | - | | | - | ) mm | |
| C = | ( | - | | | - | ) mm | |
| D = | ( | - | | | - | ) mm | |
| Schwerpunkt | S = | ( | - | | | - | ) mm |
| Winkelsumme | \[ \alpha + \beta + \gamma + \delta = 360° \] | \[ \alpha = \gamma \] ; \[ \beta = \delta \] ; \[ \alpha + \beta = \gamma + \delta = 180° \] |
| Höhe | \[ h_a = b \cdot \text{sin } \alpha \] | \[ h_b = a \cdot \text{sin } \beta \] |
| Diagonale | \[e = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \text{cos } \beta } \] | \[= \sqrt{a^2 + b^2 + 2 \cdot a \cdot b \cdot \text{cos } \alpha } \] |
| \[f = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \text{cos } \alpha } \] | \[= \sqrt{a^2 + b^2 + 2 \cdot a \cdot b \cdot \text{cos } \beta } \] |
| \[ e^2 + f^2 = 2 \cdot ( a^2 + b^2 ) \] | |
| Umfang | \[ U = 2 \cdot ( a + b ) \] |
| Fläche | \[ A = a \cdot h_a = b \cdot h_b = a \cdot b \cdot \text{sin } \alpha \] |
| Schwerpunkt Schnittp. d. Diagonalen |
\[ S_x = ( a + h_a \cdot \text{cos } \alpha ) : 2 \] \[ S_y = h_a : 2 \] |
mit Punktkoordinaten | \[ x_S = x_C : 2 \] \[ y_S = y_C : 2 \] |
| Winkel | \[ \alpha = \beta = \gamma = \delta = 90° \] |
| Diagonale | \[e = f = \sqrt{ a^2 + b^2 } \] |
| Fläche | \[ A = a \cdot b \] |
| Seitenlänge | \[ a = b \] |
| Diagonale | \[e = \frac{h_a}{ \text{cos } ( \alpha / 2 ) } \] | \[= 2 \cdot a \cdot \text{cos } \left( \frac{\alpha}{2} \right) \] | ||
| \[f = \frac{h_a}{ \text{cos } ( \beta / 2 ) } \] | \[= 2 \cdot a \cdot \text{cos } \left( \frac{\beta}{2} \right) \] | \[ \left( \frac{e}{2} \right)^2 + \left( \frac{f}{2} \right)^2 = a^2 \] | ||
| Fläche | \[ A = a \cdot h_a = \frac{1}{2} \cdot e \cdot f \] |
| Diagonale | \[e = \sqrt{ 2 } \cdot a \] |
| Fläche | \[ A = a^2 \] |